Virus , Bakteri , Algae, Jamur

Virus

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Untuk kegunaan lain dari Virus, lihat Virus (disambiguasi).
?Virus
Rotavirus

Klasifikasi virus
Kelas: I–VII
Groups
I: Virus dsDNA
II: Virus ssDNA
III: Virus dsRNA
IV: Virus (+)ssRNA
V: Virus (−)ssRNA
VI: Virus ssRNA-RT
VII: Virus dsDNA-RT

Virus adalah parasit berukuran mikroskopik yang menginfeksi sel organisme biologis. Virus bersifat parasit obligat, hal tersebut disebabkan karena virus hanya dapat bereproduksi di dalam material hidup dengan menginvasi dan memanfaatkan sel makhluk hidup karena virus tidak memiliki perlengkapan selular untuk bereproduksi sendiri. Biasanya virus mengandung sejumlah kecil asam nukleat (DNA atau RNA, tetapi tidak kombinasi keduanya) yang diselubungi semacam bahan pelindung yang terdiri atas protein, lipid, glikoprotein, atau kombinasi ketiganya. Genom virus akan diekspresikan menjadi baik protein yang digunakan untuk memuat bahan genetik maupun protein yang dibutuhkan dalam daur hidupnya.

Istilah virus biasanya merujuk pada partikel-partikel yang menginfeksi sel-sel eukariota (organisme multisel dan banyak jenis organisme sel tunggal), sementara istilah bakteriofage atau fage digunakan untuk jenis yang menyerang jenis-jenis sel prokariota (bakteri dan organisme lain yang tidak berinti sel).

Virus sering diperdebatkan statusnya sebagai makhluk hidup karena ia tidak dapat menjalankan fungsi biologisnya secara bebas jika tidak berada dalam sel inang. Karena karakteristik khasnya ini virus selalu terasosiasi dengan penyakit tertentu, baik pada manusia (misalnya virus influenza dan HIV), hewan (misalnya virus flu burung), atau tanaman (misalnya virus mosaik tembakau/TMV).

Daftar isi

[sembunyikan]

[sunting] Etimologi

Kata virus adalah kata bahasa Latin untuk racun dan substansi beracun lainnya, yang pertama kali digunakan di Bahasa Inggris tahun 1392.[1] Definisi “agen yang menyebabkan infeksi penyakit” pertama kali digunakan tahun 1728,[1] sebelum ditemukannya virus sendiri oleh Dmitry Iwanovsky tahun 1892.

[sunting] Sejarah penemuan

Virus mosaik tembakau merupakan virus yang pertama kali divisualisasikan dengan mikroskop elektron.

  • Virus telah menginfeksi sejak jaman sebelum masehi, hal tersebut terbukti dengan adanya beberapa penemuan-penemuan yaitu laporan mengenai infeksi virus dalam hieroglyph di Memphis, ibu kota Mesir kuno (1400SM) yang menunjukkan adana penyakit poliomyelitis, selain itu, Raja Firaun Ramses V meninggal pada tahun 1196 SM dan dipercaya meninggal karena terserang virus Smallpox.
  • Pada jaman sebelum masehi, virus endemik yang cukup terkenal adalah virus Smallpox yang menyerang masyarakat cina pada tahun 1000. Akan tetapi pada pada tahun 1798 , Edward Jenner menemukan bahwa beberapa pemerah susu memiliki kekebalan terhadap virus pox. Hal tersebut diduga karena Virus Pox yang terdapat pada sapi, melindungi manusia dari Pox. Penemuan tersebut yang dipahami kemudian merupakan pelopor penggunaan vaksin.
  • Pada tahun 1880, Louis Pasteur dan Robert Koch mengemukakan suatu “germ theory” yaitu bahwa mikroorganisme merupakan penyebab penyakit. Pada saat itu juga terkenal Postulat Koch yang sangat terkenal hingga saat ini yaitu :
  1. Agen penyakit harus ada di dalam setiap kasus penyakit
  2. Agen harus bisa diisolasi dari inang dan bisa ditumbuhkan secara in vitro
  3. Ketika kultur agen muri diinokulasikan ke dalam sel inang sehat yang rentan maka ia bisa menimbulkan penyakit
  4. Agen yang sama bisa di ambil dan diisolasi kembali dari inang yang terinfeksi tersebut
  • Penelitian mengenai virus dimulai dengan penelitian mengenai penyakit mosaik yang menghambat pertumbuhan tanaman tembakau dan membuat daun tanaman tersebut memiliki bercak-bercak. Pada tahun 1883, Adolf Mayer, seorang ilmuwan Jerman, menemukan bahwa penyakit tersebut dapat menular ketika tanaman yang ia teliti menjadi sakit setelah disemprot dengan getah tanaman yang sakit. Karena tidak berhasil menemukan mikroba di getah tanaman tersebut, Mayer menyimpulkan bahwa penyakit tersebut disebabkan oleh bakteri yang lebih kecil dari biasanya dan tidak dapat dilihat dengan mikroskop.
  • Pada tahun 1892, Dimitri Ivanowsky dari Rusia menemukan bahwa getah daun tembakau yang sudah disaring dengan penyaring bakteri masih dapat menimbulkan penyakit mosaik. Ivanowsky lalu menyimpulkan dua kemungkinan, yaitu bahwa bakteri penyebab penyakit tersebut berbentuk sangat kecil sehingga masih dapat melewati saringan, atau bakteri tersebut mengeluarkan toksin yang dapat menembus saringan.[2] Kemungkinan kedua ini dibuang pada tahun 1897 setelah Martinus Beijerinck dari Belanda menemukan bahwa agen infeksi di dalam getah yang sudah disaring tersebut dapat bereproduksi karena kemampuannya menimbulkan penyakit tidak berkurang setelah beberapa kali ditransfer antartanaman.[2] Patogen mosaik tembakau disimpulkan sebagai bukan bakteri, melainkan merupakan contagium vivum fluidum, yaitu sejenis cairan hidup pembawa penyakit.[2]
  • Setelah itu, pada tahun 1898, Loeffler dan Frosch melaporkan bahwa penyebab penyakit mulut dan kaki sapi dapat melewati filter yang tidak dapat dilewati bakteri. Namun demikian, mereka menyimpulkan bahwa patogennya adalah bakteri yang sangat kecil.[2]
  • Pendapat Beijerinck baru terbukti pada tahun 1935, setelah Wendell Meredith Stanley dari Amerika Serikat berhasil mengkristalkan partikel penyebab penyakit mosaik yang kini dikenal sebagai virus mosaik tembakau.[3] Virus ini juga merupakan virus yang pertama kali divisualisasikan dengan mikroskop elektron pada tahun 1939 oleh ilmuwan Jerman G.A. Kausche, E. Pfankuch, dan H. Ruska.[4]
  • Pada tahun 1911, Peyton Rous menemukan jika ayam yang sehat diinduksi dengan sel tumor dari ayam yang sakit, maka pada ayam yang sehat tersebut juga akan terkena kanker.[5] Selain itu, Rous juga mencoba melisis sel tumor dari ayam yang sakit lalu menyaring sari-sarinya dengan pori-pori yang tidak dapat dilalui oleh bakteri, lalu sari-sari tersebut di suntikkan dalam sel ayam yang sehat dan ternyata hal tersebut juga dapat menyebabkan kanker.[5] Rous menyimpulkan kanker disebabkan karena sel virus pada sel tumor ayam yang sakit yang menginfeksi sel ayam yang sehat.[5] Penemuan tersebut merupakan penemuan pertama virus onkogenik, yaitu virus yang dapat menyebabkan tumor. Virus yang ditemukan oleh Rous dinamakan Rous Sarcoma Virus(RSV).[5]
  • Pada tahun 1933, Shope papilloma virus atau cottontail rabbit papilloma virus (CRPV)yang ditemukan oleh Dr Richard E Shope merupakan model kanker pertama pada manusia yag disebabkan oleh virus.[6] Dr Shope melakukan percobaan dengan mengambil filtrat dari tumor pada hewan lalu disuntikkan pada kelinci domestik yang sehat, dan ternyata timbul tumor pada kelinci tersebut.[6]
  • Wendell Stanley merupakan orang pertama yang berhasil mengkristalkan virus pada tahun 1935.[7] Virus yang dikristalkan merupakan Tobacco Mozaic Virus (TMV).[7] Stanley mengemukakan bahwa virus akan dapat tetap aktif meskipun setelah kristalisasi.[7]
  • Martha Chase dan Alfred Hershey pada tahun 1952 berhasil menemukan bakteriofage.[8] Bakterofage merupakan virus yang memiliki inang bakteri sehingga hanya dapat bereplikasi di dalam sel bakteri.[8]

[sunting] Struktur dan anatomi virus

Model skematik virus berkapsid heliks (virus mosaik tembakau): 1. asam nukleat (RNA), 2. kapsomer, 3. kapsid.

Virus adalah organisme subselular yang karena ukurannya sangat kecil, hanya dapat dilihat dengan menggunakan mikroskop elektron. Ukurannya lebih kecil daripada bakteri sehingga virus tidak dapat disaring dengan penyaring bakteri. Virus terkecil berdiameter hanya 20 nm (lebih kecil daripada ribosom), sedangkan virus terbesar sekalipun sukar dilihat dengan mikroskop cahaya.[9]

Genom virus dapat berupa DNA ataupun RNA.[10] Genom virus dapat terdiri dari DNA untai ganda, DNA untai tunggal, RNA untai ganda, atau RNA untai tunggal.[10] Selain itu, asam nukleat genom virus dapat berbentuk linear tunggal atau sirkuler.[10] Jumlah gen virus bervariasi dari empat untuk yang terkecil sampai dengan beberapa ratus untuk yang terbesar.[10][9] Bahan genetik kebanyakan virus hewan dan manusia berupa DNA, dan pada virus tumbuhan kebanyakan adalah RNA yang beruntai tunggal.[10]

Bahan genetik virus diselubungi oleh suatu lapisan pelindung.[10] Protein yang menjadi lapisan pelindung tersebut disebut kapsid.[10] Bergantung pada tipe virusnya, kapsid bisa berbentuk bulat (sferik), heliks, polihedral, atau bentuk yang lebih kompleks dan terdiri atas protein yang disandikan oleh genom virus.[10] Kapsid terbentuk dari banyak subunit protein yang disebut kapsomer.[9][10]

Bakteriofag terdiri dari kepala polihedral berisi asam nukleat dan ekor untuk menginfeksi inang.

Untuk virus berbentuk heliks, protein kapsid (biasanya disebut protein nukleokapsid) terikat langsung dengan genom virus.[11] Misalnya, pada virus campak, setiap protein nukleokapsid terhubung dengan enam basa RNA membentuk heliks sepanjang sekitar 1,3 mikrometer.[11] Komposisi kompleks protein dan asam nukleat ini disebut nukleokapsid.[11] Pada virus campak, nukleokapsid ini diselubungi oleh lapisan lipid yang didapatkan dari sel inang, dan glikoprotein yang disandikan oleh virus melekat pada selubung lipid tersebut.[11] Bagian-bagian ini berfungsi dalam pengikatan pada dan pemasukan ke sel inang pada awal infeksi.[11]

Virus cacar air memiliki selubung virus.

Kapsid virus sferik menyelubungi genom virus secara keseluruhan dan tidak terlalu berikatan dengan asam nukleat seperti virus heliks.[12] Struktur ini bisa bervariasi dari ukuran 20 nanometer hingga 400 nanometer dan terdiri atas protein virus yang tersusun dalam bentuk simetri ikosahedral.[12] Jumlah protein yang dibutuhkan untuk membentuk kapsid virus sferik ditentukan dengan koefisien T, yaitu sekitar 60t protein.[12] Sebagai contoh, virus hepatitis B memiliki angka T=4, butuh 240 protein untuk membentuk kapsid.[12] Seperti virus bentuk heliks, kapsid sebagian jenis virus sferik dapat diselubungi lapisan lipid, namun biasanya protein kapsid sendiri langsung terlibat dalam penginfeksian sel.[12]

Beberapa jenis virus memiliki unsur tambahan yang membantunya menginfeksi inang.Virus pada hewan memiliki selubung virus, yaitu membran menyelubungi kapsid.[13] Selubung ini mengandung fosfolipid dan protein dari sel inang, tetapi juga mengandung protein dan glikoprotein yang berasal dari virus.[13] Selain protein selubung dan protein kapsid, virus juga membawa beberapa molekul enzim di dalam kapsidnya. Ada pula beberapa jenis bakteriofag yang memiliki ekor protein yang melekat pada “kepala” kapsid. Serabut-serabut ekor tersebut digunakan oleh fag untuk menempel pada suatu bakteri.[14] Partikel lengkap virus disebut virion. Virion berfungsi sebagai alat transportasi gen, sedangkan komponen selubung dan kapsid bertanggung jawab dalam mekanisme penginfeksian sel inang.[14]

[sunting] Patogenesis Virus

[sunting] Macam-macam infeksi virus

Virus dapat menginfeksi inangnya dan menyebabkan berbagai akibat bagi inangnya.[15] ada yang berbahaya, namun juga ada yang dapat ditangani oleh sel imun dalam tubuh sehingga akibat yang dihasilkan tidak terlalu besar.[15]

  1. Infeksi Akut
    infeksi akut merupakan infeksi yang berlangsung dalam jangka waktu cepat namun dapat juga berakibat fatal.[15] Akibat dari infeksi akut adalah :
    * Sembuh tanpa kerusakan (Sembuh total)[15]
    * Sembuh dengan kerusakan/cacat, misalnya : polio[15]
    * Berlanjut kepada infeksi kronis[15]
    * Kematian[15]
  2. Infeksi Kronis
    Infeksi kronis merupakan infeksi virus yang berkepanjangan sehingga ada resiko gejala penyakit muncul kembali.[15] Contoh dari infeksi kronis adalah :
    * Silent subclinical infection seumur hidup, contoh : cytomegalovirus( CMV)[15]
    * Periode diam yang cukup lama sebelum munculnya penyakit, contoh : HIV [15]
    * Reaktivasi yang menyebabkan infeksi akut, contoh : shingles[15]
    * Penyakit kronis yang berulang (kambuh), contoh : HBV, HCV
    * Kanker contoh : HTLV-1, HPV, HBV, HCV, HHV.[15]

[sunting] Replikasi virus

Replikasi virus terdiri atas beberapa tahapan-tahapan yaitu pelekatan virus, penetrasi, pelepasan mantel, replikasi genom dan ekspresi gen, perakitan, pematangan, dan pelepasan.

[sunting] Pelekatan Virus

Pelekatan virus merupakan proses interaksi awal antara partikel virus dengan molekul reseptor pada permukaan sel inang.[16] Pada tahap ini, terjadi ikatan spesifik antara molekul reseptor seluler dengan antireseptor pada virus.[16] Beberapa jenis virus memerlukan molekul lainnya untuk proses pelekatan yaitu koreseptor.[16]

Molekul reseptor yang target pada permukaan sel dapat berbentuk protein (biasanya glikoprotein) atau residu karbohidrat yang terdapat pada glikoprotein atau glikolipid.[16]

Beberapa virus kompleks seperti poxvirus dan herpesvirus memiliki lebih dari satu reseptor sehingga mempunyai beberapa rute untuk berikatan dengan sel.[16]

Reseptor virus mempunyai beberapa kelas yang berbeda :

  • molekul immunoglobulin-like superfamily
  • reseptor terkait membran
  • saluran dan transporter transmembran[16]

Beberapa contoh virus beserta reseptor yang dimiliki :

  • Human Rhinovirus (HRV)
Human Rhinovirus memiliki reseptor ICAM-1(Intracelluler adhesion molecule-1).[17] Molekul tersebut merupakan molekul adhesi yang fungsi normalnya adalah untuk mengikatkan sel kepada substratnya.[17] struktur ICAM-1 mirip dengan molekul imunoglobulin dengan domain C dan V sehingga digolongkan sebagai protein supefamily immunoglobulin[17]
Struktur ICAM-1 memiliki lima Ig-like domain untuk berikatan dengan Lfa-1 (Leukocite function antigen-1), Mac-1 (Macrofage antigen-1), Rhinovirus (HRV), fibrinogen, dan PFIE (malaria infected erythocytes).[17]
10 serotipe dari HRV menggunakan ICAM-1 sebagai reseptor, sepuluh serotipe lainnya menggunakan protein yang beruhubungan dengan LDL reseptor.[17]
  • Poliovirus
mempunyai reseptor virus berupa protein membran integral yang juga anggota dari molekul superfamily immunoglobulin.[18] Reseptor ini memiliki tiga domain yaitu satu berupa variabel dan dua konstan.[18]
  • Virus influenza
Virus ini mempunyai dua tipe spike glikoprotein pada permukaan partikel virus yaitu hemagglutinin (HA) dan neuraminidase.[19] HA akan berikatan dengan reseptor virus influenza yang berupa asam sialat (N-asetil neuraminic acid).[19]
virus ini berikatan dengan muatan negatif dari moieties asam sialat yang ada pada rantai oligosakarida yang secara kovalen berikatan dengan glikoprotein pada permukaan sel.[19]
adanya asam sialat pada hampir semua jenis sel menyebabkan virus influenza bisa berikatan dengan banyak tipe sel.[19]

[sunting] Penetrasi

Penetrasi terjadi pada waktu yang sangat singkat setelah pelekatan virus pada reseptor di membran sel.[20] Proses ini memerlukan energi Tiga mekanisme yang terlibat:

  • Translokasi partikel virus
Proses translokasi relatif jarang terjadi di antara virus dan mekanisme belom sepenuhnya dipahami benar, kemungkinan diperantarai oleh protein di dalam virus kapsid dan reseptor membran spesifik.[21]
  • Endositosis virus ke dalam vakuola intraseluler
proses endositosis merupakan mekanisme yang sangat umum sebagai jalan masuk virus ke dalam sel.[22] Tidak diperlukan protein virus spesifik selain yang telah digunakan untuk pengikatan reseptor.[22]
  • fusi dari envelope dengan membran sel (untuk virus yang berenvelope)

Proses fusi virus berenvelop dengan membran sel baik secara langsung maupun dengan permukaan sel maupun mengikuti endositosis dalam sitoplasma.[22] Diperlukan adanya protein fusi spesifik dalam envelop virus, misalnya : HA influenza dan glikoprotein transmembran (TM) Rhinovirus.[22]

[sunting] Pelepasan Mantel

Tahap ini terjadi setelah proses penetrasi dimana kapsid virus baik seluruhnya maupun sebagian dipindahkan ke dalam sitoplasma sel inang.[20] Pada tahap ini genom virus terekspos dalam bentuk kompleks nukleoprotein.[20] Dalam beberapa kasus, tahap ini berlangsung cukup sederhana dan terjadi selama fusi pada membran virus dengan membran plasma.[20] untuk virus lainnya, tahap ini merupakan proses multistep yang melibatkan jalur endositosis dan membran nukleus.[20]

[sunting] Replikasi Genom dan Ekspresi Gen

7 Klasifikasi Baltimore.[23]

Strategi replikasi dari beberapa virus tergantung pada material genetik alami dari virus tersebut.[24] Dalam hal ini, virus dibagi dalam 7 kelompok seperti pengelompokan [[David Baltimore].[24] Proses ekspresi gen akan menentukan semua proses infeksi virus (akut, kronis, persisten, atau laten).[24]

  • Kelas I : DNA Utas Ganda
Kelompok ini dibagi menjadi dua kelompok :
  1. Replikasi terjadi di inti dan relatif tergantung kepada faktor-faktor seluler (Adenoviridae, Polyomaviridae, Herpesviridae)[24]
  2. Replikasi terjadi di sitoplasma (Poxviridae). virus ini melibatkan semua faktor-faktor yang penting untuk transkripsi dan replikasi dari genomnya, dan kebanyakan tidak tergantung pada perangkat replikasi dari inangnya[24].
  • Kelas II : DNA Utas Tunggal
Replikasi terjadi di dalam nukleus, melibatkan bentuk utas ganda intermediate sebagai cetakan untuk sintesis utas tunggal DNA turunannya (Parvoviridae)[24]
  • Kelas III : RNA Utas Ganda
Virusnya memiliki genom yang tersegmentasi. masing-masing segmennya ditranskripsi secara terpisah untuk menghasilkan monosistronik mRNA individual. contoh : Reoviridae[24]
  • Kelas IV : RNA Utas Tunggal (+)
Virus dengan polisistronik mRNA dimana kelas ini genom RNA membentuk mRNA yang ditranslasikan untuk membentuk suatu polyprotein yang dipecah membentuk protein matang. Contoh : Picornaviridae[24]
  • Kelas V : RNA Utas Tunggal (-)
Genom pada kelas ini dibagi menjadi dua tipe :

  1. Genom tidak bersegmen (Rhabdoviridae), Tahap pertama dalam replikasi adalah transkripsi dari genom RNA utas (-) oleh virion RNA-dependent RNA polimerase untuk menghasilkan monosistronik mRNA yang juga sebagai cetakan untuk replikasi genom.[24]
  2. Genom bersegmen (Orthomixoviridae), replikasi terjadi di dalam nukleus dimana monosistronik mRNA untuk masing-masing gen virus dihasilkan oleh transkriptase virus.[24]
  • Kelas VI : RNA Utas Tunggal (+) dengan DNA Intermediate
Genom Retrovirus RNA utas tunggal (+) bersifat diploid dan tidak dipakai secara langsung sebagai mRNA tetapi sebagi template untuk reverse transkriptase menjadi DNA.[24]
  • Kelas VII : DNA Utas Ganda dengan RNA Intermediate
Virus kelompok ini bergantung kepada reverse transkriptase, tetapi berbeda dengan retrovirus, prosesnya terjadi di dalam partikel virus selama maturasi (Hepadnaviridae).[24]

[sunting] Perakitan

Perakitan merupakan proses pengumpulan komponen-komponen virion pada bagian khusus di dalam sel.[20] Selama proses ini, terjadi pembentukan struktur partikel virus.[20] Proses ini tergantung kepada proses replikasi di dalam sel dan tempat di mana virus melepaskan diri dari sel.[20] mekanisme perakitan bervariasi untuk virus yang berbeda-beda. Contoh : proses perakitan Picornavirus, Poxvirus, dan Reovirus terjadi di sitoplasma, sementara itu proses perakitan Adenovirus , Poliovirus, dan Parvovirus terjadi di nukleus.[20]

[sunting] Pematangan

Pematangan merupakan tahap dari siklus hidup virus dimana virus bersifat infeksius.[20] pada tahap ini terjadi perubahan struktur dalam partikel virus yang kemungkinan dihasilkan oleh pemecahan spesifik protein kapsid untuk menghasilkan produk yang matang.[20] protease virus dan enzim seluler lainnya biasanya terlibat dalam proses ini.[20]

[sunting] Pelepasan

Semua virus kecuali virus tanaman melepaskan diri dari sel inang melalui dia mekanisme :

  • untuk virus litik (semua virus non-selubung), pelepasan merupakan proses yang sederhana, dimana sel yang terinfeksi terbuka dan virus keluar.[20]
  • untuk virus berselubung, diperlukan membran lipid ketika virus keluar dari sel melewati membran , proses ini dikenal sebagai budding.[20]

Proses pelepasan partikel virus kemungkinan bisa merusak sel(Paramyxovirus, Rhabdovirus, dan Togavirus) , dan kemungkinan sebagian lagi tidak merusak sel (Retrovirus).[20]

[sunting] Klasifikasi virus

Virus dapat diklasifikasi menurut morfologi, tropisme dan cara penyebaran, dan genomik fungsional.[25]

  • Klasifikasi virus berdasarkan morfologi
Berdasarkan morfologi, virus dibagi berdasarkan jenis asam nukleat dan juga protein membran terluarnya (envelope) menjadi 4 kelompok, yaitu :[25]
  1. Virus DNA
  2. Virus RNA
  3. Virus berselubung
  4. Virus non-selubung
  • Klasifikasi virus berdasarkan tropisme dan cara penyebaran
Berdasarkan tropisme dan cara penyebaran, virus dibagi menjadi:[25]
  1. Virus Enterik
  2. Virus Respirasi
  3. Arbovirus
  4. Virus onkogenik
  5. Hepatitis virus
  • Klasifikasi virus berdasarkan genomik fungsional
Virus di klasifikan menjadi 7 kelompok berdasarkan alur fungsi genomnya. Klasifikasi ini disebut juga klasifikasi Baltimore yaitu:[25]
  1. Virus Tipe I = DNA Utas Ganda
  2. Virus Tipe II = DNA Utas Tunggal
  3. Virus Tipe III = RNA Utas Ganda
  4. Virus Tipe IV = RNA Utas Tunggal (+)
  5. Virus Tipe V = RNA Utas Tunggal (-)
  6. Virus Tipe VI = RNA Utas Tunggal (+) dengan DNA perantara
  7. Virus Tipe VII = DNA Utas Ganda dengan RNA perantara

[sunting] Contoh-contoh virus

[sunting] Virus RNA

Virus RNA merupakan virus yang memiliki materi genetik berupa RNA, kelompok yang tergolong dalam kelompok ini adalah virus kelas III, IV, V, dan VI. Beberapa contoh familia virus yang termasuk ke dalam kelompok ini adalah Retroviridae, Picornaviridae, Orthomixoviridae, dan Arbovirus.[26]

[sunting] Retroviridae

Retroviridae merupakan virus berbentuk ikosahedral. Virus ini memiliki genom RNA berjumlah dua buah yang keduanya identik dan memiliki polaritas positif yang nantinya akan diekspresikan menjadi enzim polimerase yang unik yaitu reverse traskriptase yang berguna untuk mengubah RNA menjadi DNA.[26][27]DNA yang dihasilkan nantinya akan berintegrasi ke dalam DNA sel inang sebagai provirus.[26] Virus ini termasuk ke dalam virus yang ganas, dapat menyebabkan penekanan sistem kekebalan tubuh dan juga tumor.[26] Sifatnya yang ganas tersebut disebabkan salah satunya karena virus ini mudah mengalami mutasi.[26]

Salah satu genus dari famili ini yang paling terkenal adalah genus Lentivirus, yang contoh spesiesnya adalah HIV 1 dan 2.[26]

[sunting] Picornaviridae

Picornaviridae merupakan berukuran kecil. Virus ini memiliki genom RNA dengan polaritas positif sehingga termasuk virus kelas IV dalam klasifikasi Baltimore.[28] Virus dalam famili ini mampu menyebabkan banyak penyakit pada manusia, di antaranya adalah penyakit polio yang disebabkan oleh Poliovirus dan flu ringan yang disebabkan oleh Rhinovirus.[28]

[sunting] Orthomixoviridae

Orthomoxoviridae merupakan virus yang memiliki selubung dengan materi genetik RNA bersegmen berpolaritas negatif sehingga virus ini termasuk dalam kelas V dalam klasifikasi Baltimore.[29] Ciri khan dari virus ini adalah virus ini memiliki protein permukaan yang merupakan antigen utama yaitu Hemmaglutinin (HA) dan Neuraminidase (NA).[29] Hemmaglutinin merupakan bagian virus yang menempel pada sel target oleh sebab itu antibodi terhadap hemmaglutinin dapat melindung dari infeksi virus.[29] Neuraminidase berperan untuk melepaskan virion dari sel oleh sebab itu antibodi terhadap NA dapat menekan tingkat keparahan infeksi virus.[29]

Virus ini di klasifikasikan menjadi empat kelompok yaitu :

  1. Influenza tipe A
    Influenza tipe A merupakan virus yang menginfeksi berbagai spesies baik manusia, burung (burung liar, ternak, domestik), babi, kuda, anjing, dan mamalia air(anjing laut dan paus).[29] Virus influenza tipe A dapat mengalami antigenic drift dan antigenic shift. [29]
    Antigenic drift adalah terjadinya mutasi pada gen yang menyandikan protein Hemmaglutinin. Hal tersebut menyebabkan antibodi yang ada tidak dapat mengenalinya lagi. Kejadian tersebut menyebabkan terjadinya endemik musiman.[29]
    Antigenic shift adalah munculnya subtipe barus virus influenza yang disebabkan karena penggabunggan genetik antara manusia dengan virus hewan atau dengan transmisi langsung dari hewan unggas ke manusia. karena tidak ada atau sedikitnya imunitas terhada virus baru, maka pandemik dapat terjadi.[29]
  2. Influenza tipe B
  3. Influenza tipe C
  4. Tick-Borne Influenza
    virus ini merupakan virus yang berasal dari kutu.[29]
[sunting] Arboviruses

Arbovirus merupakan singkatan dari ARthropoda-BOrne virus yaitu virus yang berasal dari kelompok Arthropoda.[30] Arbovirus dibagi menjadi empat famili yaitu :

  1. Togaviridae
    contoh virus yang termasuk dalam kelompok ini adalah Rubellavirus.[30]
  2. Flaviviridae
    contoh virus yang termasuk dalam kelompok ini adalah Hepatitis C virus dan Denguevirus yang penyebabkan penyakit demam berdarah dengue.[30]
  3. Bunyaviridae
    contoh virus yang termasuk dalam kelompok ini adalah California encephalitis virus (CE) yang menyebabkan penyakit encephalitis pada manusia.[30]
  4. Reoviridae
    contoh virus yang termasuk dalam kelompok ini adalah reovirus yang menyebabkan Colorado tick fever dan Rotavirus yang menyebabkan diare epidemik pada anak-anak.[30]

[sunting] Virus DNA

Virus DNA merupakan virus yang memiliki materi genetik berupa DNA, kelompok yang tergolong dalam kelompok ini adalah virus kelas I, II, VII. Beberapa contoh familia virus yang termasuk ke dalam kelompok ini adalah Herpesviridae, Parvoviridae, dan Poxviridae.[31]

[sunting] Herpesviridae

Herpesviridae merupakan kelompok virus berukuran besar dengan materi genetik DNA utas ganda sehingga dikelompokkan ke dalam kelas 1 dalam klasifikasi baltimore. Virus dalam kelompok ini dapat menyebabkan penyakit ganas dan juga dapat menyebabkan kelainan pasca kelahiaran pada bayi.[31] Herpesviridae terbagi ke dalam beberapa genus, yaitu :

  1. Alpha Herpesvirus
    Virus yang termasuk dalam kelompok Alpha herpesvirus biasanya menyebabkan penyakit yang akut dengan gejala yang muncul saat itu juga.[31] infeksi virus ini bersifat laten persisten disebabkan karena kemampuan genom virus ini untuk berintergrasi dengan sel inang.[31] jika kondisi inang sedang lemah, maka ada kemungkinan penyakit dapat muncul kembali pada tempat yang sama.[31]
    contoh dari virus ini adalah Herpes simplex tipe 1 dan 2 dan Varicella zoster(VZ) virus.[31]
  2. Beta Herpesvirus
    Virus yang termasuk dalam kelompok beta herpesvirus biasanya menyebabkan penyakit yang akut akan tetapi tidak ditemukan gejala pada carrier.[31] virus ini menyebabkan infeksi pada bayi dan perkembangan abnormal (penyakit kongenital).[31]
    contoh dari virus ini adalah Cytomegalovirus.[31]
  3. Gamma Herpesvirus
    Virus yang termasuk dalam kelompok ini mampu menyebabkan penyakit limphopoliperatif jinak dan ganas.[31]
    contoh dari virus ini adalah Epstein-Barr virus.[31]
[sunting] Parvoviridae

Parvoviridae merupakan virus dengan DNA utas tunggal polaritas positif atau negatif sehingga termasuk dalam kelas II dalam klasifikasi Baltimore.[32] Virus ini tidak memiliki selubung virus dan merupakan virus manusia yang berukuran paling kecil.[32] Virus merupakan virus yang tidak sempurna sehingga perlu berasosiasi dengan adenovirus sehingga sering disebut Adeno-Associated Virus(AAV).[32] Salah satu contoh kelompok ini adalah virus B-19 yang dapat menyebabkan cacat atau keguguran pada janin.[32]

[sunting] Poxviridae

Poxviridae merupakan virus dengan materi genetik DNA untai ganda sehingga virus ini di termasuk dalam kelas I dalam klasifikasi Baltimore.[33] Ciri khas dari virus ini adalah virus ini memiliki morfologi besar dan kompleks.[33] Virus yang terkenal dalam kelompok ini adalah Smallpox.[33] Smallpox cukup terkenal karena menimbulkan pandemik yang sangat besar diseluruh dunia.[33] sekarang virus Smallpox sudah dimusnahkan.[33]

[sunting] Peranan Virus dalam Kehidupan

Beberapa virus ada yang dapat dimanfaatkan dalam rekombinasi genetika.[15] Melalui terapi gen, gen jahat (penyebab infeksi) yang terdapat dalam virus diubah menjadi gen baik (penyembuh).[15] Baru-baru ini David Sanders, seorang profesor ­biologi pada Purdue’s School of Science telah menemukan cara pemanfaatan virus dalam dunia kesehatan.[15] Dalam temuannva yang dipublikasikan dalam Jurnal Virology, Edisi 15 Desember ­2002, David Sanders berhasil menjinakkan cangkang luar virus Ebola sehingga dapat dimanfaatkan sebagai pembawa gen kepada sel yang sakit (paru-paru).[15] Meskipun demikian, kebanyakan virus bersifat merugikan terhadap kehidupan manusia, hewan, dan tumbuhan.[15]

Virus sangat dikenal sebagai penyebab penyakit infeksi pada manusia, hewan, dan tumbuhan.[15] Sejauh ini tidak ada makhluk hidup yang tahan terhadap virus.[15] Tiap virus secara khusus menyerang sel-sel tertentu dari inangnya. Virus yang menyebabkan selesma menyerang saluran pernapasan, virus campak menginfeksi kulit, virus hepatitis menginfeksi hati, dan virus rabies menyerang sel-sel saraf. Begitu juga yang terjadi pada penyakit AIDS (acquired immune deficiency syndrome), yaitu suatu penyakit yang mengakibatkan menurunnya daya tahan tubuh penderita penyakit tersebut disebabkan oleh virus HIV yang secara khusus menyerang sel darah putih.[15] Tabel berikut ini memuat beberapa macam penyakit yang disebabkan oleh virus.[15]

Selain manusia, virus juga menyebabkan kesengsaraan bagi hewan dan tumbuhan.[15] Tidak sedikit pula kerugian yang diderita peternak atau petani akibat ternaknya yang sakit atau hasil panennya yang berkurang.[15]

[sunting] Penyakit hewan akibat virus

Penyakit tetelo, yakni jenis penyakit yang menyerang bangsa unggas, terutama ayam. Penyebabnya adalah new castle disease virus (NCDV).[15] Penyakit kuku dan mulut, yakni jenis penyakit yang menyerang ternak sapi dan kerbau.[15] Penyakit kanker pada ayam oleh rous sarcoma virus (RSV).[15] Penyakit rabies, yakni jenis penyakit yang menyerang anjing, kucing, dan monyet, disebabkan oleh virus rabies.[15]

[sunting] Penyakit tumbuhan akibat virus

Penyakit mosaik, yakni jenis penyakit yang menyerang tanaman tembakau.[2] Penyebabnya adalah tobacco mosaic virus (TMV) Penyakit tungro, yakni jenis penyakit yang menyerang tanaman padi.[2] Penyebabnya adalah virus Tungro.[2] Penyakit degenerasi pembuluh tapis pada jeruk. Penyebabnya adalah virus citrus vein phloem degeneration (CVPD).[2]

[sunting] Penyakit manusia akibat virus

Contoh paling umum dari penyakit yang disebabkan oleh virus adalah pilek (yang bisa saja disebabkan oleh satu atau beberapa virus sekaligus), cacar, AIDS (yang disebabkan virus HIV), dan demam herpes (yang disebabkan virus herpes simpleks).[34] Kanker leher rahim juga diduga disebabkan sebagian oleh papilomavirus (yang menyebabkan papiloma, atau kutil), yang memperlihatkan contoh kasus pada manusia yang memperlihatkan hubungan antara kanker dan agen-agen infektan.[34] Juga ada beberapa kontroversi mengenai apakah virus borna, yang sebelumnya diduga sebagai penyebab penyakit saraf pada kuda, juga bertanggung jawab kepada penyakit psikiatris pada manusia.[34]

Potensi virus untuk menyebabkan wabah pada manusia menimbulkan kekhawatiran penggunaan virus sebagai senjata biologis. Kecurigaan meningkat seiring dengan ditemukannya cara penciptaan varian virus baru di laboratorium.[34]

Kekhawatiran juga terjadi terhadap penyebaran kembali virus sejenis cacar, yang telah menyebabkan wabah terbesar dalam sejarah manusia, dan mampu menyebabkan kepunahan suatu bangsa.[34] Beberapa suku bangsa Indian telah punah akibat wabah, terutama penyakit cacar, yang dibawa oleh kolonis Eropa.[34] Meskipun sebenarnya diragukan dalam jumlah pastinya, diyakini kematian telah terjadi dalam jumlah besar.[34] Penyakit ini secara tidak langsung telah membantu dominasi bangsa Eropa di dunia baru Amerika.[34]

Salah satu virus yang dianggap paling berbahaya adalah filovirus.[34] Grup Filovirus terdiri atas Marburg, pertama kali ditemukan tahun 1967 di Marburg, Jerman, dan ebola.[34] Filovirus adalah virus berbentuk panjang seperti cacing, yang dalam jumlah besar tampak seperti sepiring mi.[34] Pada April 2005, virus Marburg menarik perhatian pers dengan terjadinya penyebaran di Angola. Sejak Oktober 2004 hingga 2005, kejadian ini menjadi epidemi terburuk di dalam kehidupan manusia.[34]

[sunting] Diagnosis di laboratorium

Deteksi, isolasi, hingga analisis suatu virus biasanya melewati proses yang sulit dan mahal.[35] Karena itu, penelitian penyakit akibat virus membutuhkan fasilitas besar dan mahal, termasuk juga peralatan yang mahal dan tenaga ahli dari berbagai bidang, misalnya teknisi, ahli biologi molekular, dan ahli virus.[35] Biasanya proses ini dilakukan oleh lembaga kenegaraan atau dilakukan secara kerjasama dengan bangsa lain melalui lembaga dunia seperti Organisasi Kesehatan Dunia (WHO).[35]

[sunting] Pencegahan dan pengobatan

Karena biasanya memanipulasi mekanisme sel induknya untuk bereproduksi, virus sangat sulit untuk dibunuh.[36] Metode pengobatan sejauh ini yang dianggap paling efektif adalah vaksinasi, untuk merangsang kekebalan alami tubuh terhadap proses infeksi, dan obat-obatan yang mengatasi gejala akibat infeksi virus.[36]

Penyembuhan penyakit akibat infeksi virus biasanya disalah-antisipasikan dengan penggunaan antibiotik, yang sama sekali tidak mempunyai pengaruh terhadap kehidupan virus.[36] Efek samping penggunaan antibiotik adalah resistansi bakteri terhadap antibiotik.[36] Karena itulah diperlukan pemeriksaan lebih lanjut untuk memastikan apakah suatu penyakit disebabkan oleh bakteri atau virus.[36]

Bakteri

Bakteri (dari kata Latin bacterium; jamak: bacteria) adalah kelompok organisme yang tidak memiliki membran inti sel.[2] Organisme ini termasuk ke dalam domain prokariota dan berukuran sangat kecil (mikroskopik), serta memiliki peran besar dalam kehidupan di bumi.[2] Beberapa kelompok bakteri dikenal sebagai agen penyebab infeksi dan penyakit, sedangkan kelompok lainnya dapat memberikan manfaat dibidang pangan, pengobatan, dan industri.[3] Struktur sel bakteri relatif sederhana: tanpa nukleus/inti sel, kerangka sel, dan organel-organel lain seperti mitokondria dan kloroplas.[4] Hal inilah yang menjadi dasar perbedaan antara sel prokariot dengan sel eukariot yang lebih kompleks.[5]

Bakteri dapat ditemukan di hampir semua tempat: di tanah, air, udara, dalam simbiosis dengan organisme lain maupun sebagai agen parasit (patogen), bahkan dalam tubuh manusia.[6][7][8][9] Pada umumnya, bakteri berukuran 0,5-5 μm, tetapi ada bakteri tertentu yang dapat berdiameter hingga 700 μm, yaitu Thiomargarita.[10] Mereka umumnya memiliki dinding sel, seperti sel tumbuhan dan jamur, tetapi dengan bahan pembentuk sangat berbeda (peptidoglikan).[11] Beberapa jenis bakteri bersifat motil (mampu bergerak) dan mobilitasnya ini disebabkan oleh flagel.[12]

Daftar isi

[sembunyikan]

[sunting] Sejarah

Model mikroskop awal yang dirancang oleh Robert Hooke; dimuat dalam Micrographia.

Bakteri merupakan organisme mikroskopik.[13] Hal ini menyebabkan organisme ini sangat sulit untuk dideteksi, terutama sebelum ditemukannya mikroskop.[13] Barulah setelah abad ke-19 ilmu tentang mikroorganisme, terutama bakteri (bakteriologi), mulai berkembang.[13] Seiring dengan perkembangan ilmu pengetahuan, berbagai hal tentang bakteri telah berhasil ditelusuri.[13] Akan tetapi, perkembangan tersebut tidak terlepas dari peranan berbagai tokoh penting seperti Robert Hooke, Antoni van Leeuwenhoek, Ferdinand Cohn, dan Robert Koch.[13] Istilah bacterium diperkenalkan di kemudian hari oleh Ehrenberg pada tahun 1828, diambil dari kata Yunani βακτηριον (bakterion) yang memiliki arti “batang-batang kecil”.[13] Pengetahuan tentang bakteri berkembang setelah serangkaian percobaan yang dilakukan oleh Louis Pasteur, yang melahirkan cabang ilmu mikrobiologi.[13] Bakteriologi adalah cabang mikrobiologi yang mempelajari biologi bakteri.[5]

Robert Hooke (1635-1703), seorang ahli matematika dan sejarahwan berkebangsaan Inggris, menulis sebuah buku yang berjudul Micrographia pada tahun 1665 yang berisi hasil pengamatan yang dilakukan dengan menggunakan mikroskop sederhana.[13]Akan tetapi, Robert Hooke masih belum dapat menumukan struktur bakteri.[13] Dalam bukunya tersebut, tergambar hasil penemuannya mengenai tubuh buah kapang.[13] Walau demikian, buku inilah yang menjadi sumber deskripsi awal dari mikroorganisme.[13]

Antoni van Leeuwenhoek (1632—1723) hidup di era yang sama dengan Robert Hooke di mana pengamatan dengan mikroskop masih sangat sederhana.[13] Terinspirasi dari kerja Robert Hooke, ia membuat mikroskop rancangannya sendiri dengan sangat baik untuk mengamati makhluk mikroskopik ini pada berbagai media alami pada tahun 1684.[13] Antoni van Leeuwenhoek berhasil menemukan bakteri untuk pertama kalinya di dunia pada tahun 1676.[13] Hasil temuannya dikirimkan ke Royal Society of London yang kemudian dipublikasikan pada tahun 1684.[13] Penemuan ini segera mendapat banyak konfirmasi dari ilmuwan lainnya.[13] Sejak saat itulah, tidak hanya ilmu tentang bakteri tetapi juga mikroorganisme pada umumnya pun mulai berkembang.[13]

Ferdinand Cohn (1828-1898) merupakan seorang botanis berkebangsaan Breslau (sekarang Polandia).[13] Hasil penemuannya banyak berkisar tentang bakteri yang resisten terhadap panas.[13] Ketertarikannya pada kelompok bakteri ini mengarahkannya pada penemuan kelompok bakteri penghasil endospora yang resisten terhadap suhu tinggi.[13] Ferdinand Cohn juga berhasil menjelaskan siklus hidup bakteri Bacillus yang sekaligus menjelaskan mengapa bakteri ini bersifat tahan panas.[13] Selanjutnya, ia juga membuat dasar klasifikasi bakteri sederhana dan mengembangkan beberapa metode untuk mencegah kontaminasi pada kultur bakteri, seperti penggunaan kapas sebagai penutup pada labu takar, erlenmeyer, dan tabung reaksi. Metode ini kemudian digunakan oleh ilmuwan lain, Robert Koch.[13]

Robert Koch (1843-1910), seorang ahli fisika berkebangsaan Jerman, banyak melakukan penelitian mengenai penyakit yang disebabkan oleh infeksi bakteri.[13] Ilmuwan pada awalnya mempelajari penyakit antraks yang banyak menyerang hewan ternak.[14] Penyakit ini disebabkan oleh Bacillus anthracis, salah satu bakteri penghasil endospora.[14] Robert Koch juga merupakan orang pertama yang berhasil mendapatkan isolat murni Mycobacterium tuberculosis, bakteri penyebab penyakit tuberkulosis.[13][15] Berdasarkan dua penelitian mengenai penyakit ini, Robert Koch berhasil membuat Postulat Koch, sebuah teori mengenai mikroorganisme spesifik untuk penyakit yang spesfik.[13] Beliau juga berhasil menemukan metode untuk mendapatkan isolat murni dari bakteri.[13] Penemuan lainnya adalah penggunaan media kultur padat untuk menumbuhkan bakteri di luat habitat aslinya.[13] Pada awalnya ia menggunakan potongan kentang dan kemudian dikembangkan dengan menggunakan nutrien gelatin.[13] Penggunaan nutrien gelatin masih memiliki banyak kekurangan yang pada akhirnya penggunaanya digantikan dengan agar (sejenis polisakarida) yang digagas oleh istri Walter Hesse yang juga bekerja bersama Robert Koch.[13]

[sunting] Struktur sel

!Artikel utama untuk bagian ini adalah: Struktur sel bakteri

Struktur sel bakteri

Seperti prokariot (organisme yang tidak memiliki membran inti) pada umumnya, semua bakteri memiliki struktur sel yang relatif sederhana.[16] Sehubungan dengan ketiadaan membran inti, meteri genetik (DNA dan RNA) bakteri melayang-layang di daerah sitoplasma yang bernama nukleoid.[16] Salah satu struktur bakteri yang penting adalah dinding sel.[17] Bakteri dapat diklasifikasikan dalam dua kelompok besar berdasarkan struktur dinding selnya, yaitu bakteri gram negatif dan bakteri gram positif.[16] Bakteri gram positif memiliki dinding sel yang tersusun dari lapisan peptidoglikan (sejenis molekul polisakarida) yang tebal dan asam teikoat, sedangkan bakteri gram negatif memiliki lapisan peptidoglikan yang lebih tipis dan mempunyai struktur lipopolisakarida yang tebal.[16][5] Metode yang digunakan untuk membedakan kedua jenis kelompok bakteri ini dikembangkan oleh ilmuwan Denmark, Hans Christian Gram pada tahun 1884.[16]

Banyak bakteri memiliki struktur di luar sel lainnya seperti flagel dan fimbria yang digunakan untuk bergerak, melekat dan konjugasi.[17] Beberapa bakteri juga memiliki kapsul yang beperan dalam melindungi sel bakteri dari kekeringan dan fagositosis.[16] Struktur kapsul inilah yang sering kali menjadi faktor virulensi penyebab penyakit, seperti yang ditemukan pada Escherichia coli dan Streptococcus pneumoniae.[16] Bakteri juga memiliki kromosom, ribosom, dan beberapa spesies lainnya memiliki granula makanan, vakuola gas, dan magnetosom.[16] Beberapa bakteri mampu membentuk diri menjadi endospora yang membuat mereka mampu bertahan hidup pada lingkungan ekstrim.[18] Clostridium botulinum merupakan salah satu contoh bakteri penghasil endospora yang sangat tahan suhu dan tekanan tinggi, dimana bakteri ini juga termasuk golongan bakteri pengebab keracunan pada makanan kaleng.[18]

[sunting] Morfologi bakteri

Berbagai bentuk tubuh bakteri

Berdasarkan bentuknya, bakteri dibagi menjadi tiga golongan besar, yaitu:

  • Kokus (Coccus) dalah bakteri yang berbentuk bulat seperti bola dan mempunyai beberapa variasi sebagai berikut:[19][20]
    • Mikrococcus, jika kecil dan tunggal
    • Diplococcus, jka berganda dua-dua
    • Tetracoccus, jika bergandengan empat dan membentuk bujur sangkar
    • Sarcina, jika bergerombol membentuk kubus
    • Staphylococcus, jika bergerombol
    • Streptococcus, jika bergandengan membentuk rantai
  • Basil (Bacillus) adalah kelompok bakteri yang berbentuk batang atau silinder, dan mempunyai variasi sebagai berikut:[19][20]
    • Diplobacillus, jika bergandengan dua-dua
    • Streptobacillus, jika bergandengan membentuk rantai
  • Spiral (Spirilum) adalah bakteri yang berbentuk lengkung dan mempunyai variasi sebagai berikut:[19][20]
    • Vibrio, (bentuk koma), jika lengkung kurang dari setengah lingkaran (bentuk koma)
    • Spiral, jika lengkung lebih dari setengah lingkaran
    • Spirochete, jika lengkung membentuk struktur yang fleksibel.[20]

Bentuk tubuh/morfologi bakteri dipengaruhi oleh keadaan lingkungan, medium, dan usia. Walaupun secara morfologi berbeda-beda, bakteri tetap merupakan sel tunggal yang dapat hidup mandiri bahkan saat terpisah dari koloninya.[20]

[sunting] Alat gerak

Gambar alat gerak bakteri: A-Monotrik; B-Lofotrik; C-Amfitrik; D-Peritrik;

Banyak spesies bakteri yang bergerak menggunakan flagel.[21] Bakteri yang tidak memiliki alat gerak biasanya hanya mengikuti pergerakan media pertumbuhannya atau lingkungan tempat bakteri tersebut berada.[21] Sama seperti struktur kapsul, flagel juga dapat menjadi agen penyebab penyakit pada beberapa spesies bakteri.[21] Berdasarkan tempat dan jumlah flagel yang dimiliki, bakteri dibagi menjadi lima golongan, yaitu:[22][21]

  • Atrik, tidak mempunyai flagel.[22][21]
  • Monotrik, mempunyai satu flagel pada salah satu ujungnya.[22][21]
  • Lofotrik, mempunyai sejumlah flagel pada salah satu ujungnya.[22][21]
  • Amfitrik, mempunyai satu flagel pada kedua ujungnya.[22][21]
  • Peritrik, mempunyai flagel pada seluruh permukaan tubuhnya.[22][21]

[sunting] Habitat

!Artikel utama untuk bagian ini adalah: Habitat bakteri

Bakteri merupakan mikroorganisme ubikuotus, yang berarti melimpah dan banyak ditemukan di hampir semua tempat.[2] Habitatnya sangat beragam; lingkungan perairan, tanah, udara, permukaan daun, dan bahkan dapat ditemukan di dalam organisme hidup.[2] Diperkirakan total jumlah sel mikroorganisme yang mendiami muka bumi ini adalah 5×1030.[2] Bakteri dapat ditemukan di dalam tubuh manusia, terutama di dalam saluran pencernaan yang jumlah selnya 10 kali lipat lebih banyak dari jumlah total sel tubuh manusia. [23] Oleh karena itu, kolonisasi bakteri sangatlah mempengaruhi kondisi tubuh manusia.[24]

Thermus aquatiqus, bakteri termofilik yang banyak diaplikasikan dalam bioteknologi.

Terdapat beragam jenis bakteri yang mampu menghabitasi daerah saluran pencernaan manusia, terutama pada usus besar, diantaranya adalah bakteri asam laktat dan kelompok enterobacter .[5] Contoh bakteri yang biasa ditemukan adalah Lactobacillus acidophilus.[5][25] Di samping itu, terdapat pula kelompok bakteri lain, yaitu probiotik, yang bersifat menguntungkan karena dapat menunjang kesehatan dan bahkan mampu mencegah terbentuknya kanker usus besar.[26] Selain di dalam saluran pencernaan, bakteri juga dapat ditemukan di permukaan kulit, mata, mulut, dan kaki manusia.[24] Di dalam mulut dan kaki manusia terdapat kelompok bakteri yang dikenal dengan nama metilotrof, yaitu kelompok bakteri yang mampu menggunakan senyawa karbon tunggal untuk menyokong pertumbuhannya.[27][28][29] Di dalam rongga mulut, bakteri ini menggunakan senyawa dimetil sulfida yang berperan dalam menyebabkan bau pada mulut manusia.[30][31]

Beberapa kelompok mikroorganisme ini mampu hidup di lingkungan yang tidak memungkinkan organisme lain untuk hidup.[32] Kondisi lingkungan yang ekstrim ini menuntut adanya toleransi, mekanisme metabolisme, dan daya tahan sel yang unik.[2][33][34] Sebagai contoh, Thermus aquatiqus merupakan salah satu jenis bakteri yang hidup pada sumber air panas dengan kisaran suhu 60-80 oC.[2] Tidak hanya di lingkungan bersuhu tinggi, bakteri juga dapat ditemukan pada lingkungan dengan suhu yang sangat dingin.[35] Pseudomonas extremaustralis ditemukan pada Antartika dengan suhu di bawah 0 oC.[35] Di samping pengaruh ekstrim temperatur, bakteri juga dapat hidup pada berbagai lingkungan lain yang hampir tidak memungkinkan adanya kehidupan (lingkungan steril).[36] Halobacterium salinarum dan Halococcus sp. adalah contoh dari bakteri yang dapat hidup pada kondisi garam (NaCl) yang sangat tinggi (15-30%).[36][37] Tedapat pula beberapa jenis bakteri yang mampu hidup pada kadar gula tinggi (kelompok osmofil), kadar air rendah (kelompok xerofil), derajat keasaman pH sangat tinggi, dan rendah.[2]

[sunting] Pengaruh lingkungan terhadap bakteri

Kondisi lingkungan yang mendukung dapat memacu pertumbuhan dan reproduksi bakteri.[38] Faktor-faktor lingkungan yang berpengaruh terhadap pertumbuhan dan reproduksi bakteri adalah suhu, kelembapan, dan cahaya.[38] Secara umum, terdapat beberapa alat yang dapat digunakan untuk melakukan pengamatan sel bakteri terhadap berbagai parameter tersebut, seperti mikroskop optikal, mikroskop elektron, dan atomic force microscope (AFM).[38]

[sunting] Suhu

Suhu berperan penting dalam mengatur jalannya reaksi metabolisme bagi semua makhluk hidup.[2] Khususnya bagi bakteri, suhu lingkungan yang berada lebih tinggi dari suhu yang dapat ditoleransi akan menyebabkan denaturasi protein dan komponen sel esensial lainnya sehingga sel akan mati.[2] Demikian pula bila suhu lingkungannya berada di bawah batas toleransi, membran sitoplasma tidak akan berwujud cair sehingga transportasi nutrisi akan terhambat dan proses kehidupan sel akan terhenti.[2] Berdasarkan kisaran suhu aktivitasnya, bakteri dibagi menjadi 4 golongan:

  • Bakteri psikrofil, yaitu bakteri yang hidup pada daerah suhu antara 0°– 30 °C, dengan suhu optimum 15 °C.
  • Bakteri mesofil, yaitu bakteri yang hidup di daerah suhu antara 15° – 55 °C, dengan suhu optimum 25° – 40 °C.
  • Bakteri termofil, yaitu bakteri yang dapat hidup di daerah suhu tinggi antara 40° – 75 °C, dengan suhu optimum 50 – 65 °C
  • Bakteri hipertermofil, yaitu bakteri yang hidup pada kisaran suhu 65 – 114 °C, dengan suhu optimum 88 °C.[2]

[sunting] Kelembaban relatif

Pada umumnya bakteri memerlukan kelembaban relatif (relative humidity, RH) yang cukup tinggi, kira-kira 85%.[2] Kelembaban relatif dapat didefinisikan sebagai kandungan air yang terdapat di udara.[2] Pengurangan kadar air dari protoplasma menyebabkan kegiatan metabolisme terhenti, misalnya pada proses pembekuan dan pengeringan.[2] Sebagai contoh, bakteri Escherichia coli akan mengalami penurunan daya tahan dan elastisitas dinding selnya saat RH lingkungan kurang dari 84%.[38] Bakteri gram positif cenderung hidup pada kelembaban udara yang lebih tinggi dibandingkan dengan bakteri gram negatif terkait dengan perubahan struktur membran selnya yang mengandung lipid bilayer.[39]

[sunting] Cahaya

Cahaya merupakan salah satu faktor yang mempengaruhi pertumbuhan bakteri.[40] Secara umum, bakteri dan mikroorganisme lainnya dapat hidup dengan baik pada paparan cahaya normal.[40] Akan tetapi, paparan cahaya dengan intensitas sinar ultraviolet (UV) tinggi dapat berakibat fatal bagi pertumbuhan bakteri.[40] Teknik penggunaan sinar UV, sinar x, dan sinar gamma untuk mensterilkan suatu lingkungan dari bakteri dan mikroorganisme lainnya dikenal dengan teknik iradiasi yang mulai berkembang sejak awal abad ke-20.[40][5]. Metode ini telah diaplikasikan secara luas untuk berbagai keperluan, terutama pada sterilisasi makanan untuk meningkatkan masa simpan dan daya tahan.[5] Beberapa contoh bakteri patogen yang mampu dihambat ataupun dihilangkan antara lain Escherichia coli 0157:H7 and Salmonella.[5]

[sunting] Radiasi

Radiasi pada kekuatan tertentu dapat menyebabkan kelainan dan bahkan dapat bersifat letal bagi makhluk hidup, terutama bakteri.[41] Sebagai contoh pada manusia, radiasi dapat menyebabkan penyakit hati akut, katarak, hipertensi, dan bahkan kanker.[41] Akan tetapi, terdapat kelompok bakteri tertentu yang mampu bertahan dari paparan radiasi yang sangat tinggi, bahkan ratusan kali lebih besar dari daya tahan manusia tehadap radiasi, yaitu kelompok Deinococcaceae. [42] Sebagai perbandingan, manusia pada umumnya tidak dapat bertahan pada paparan radiasi lebih dari 10 Gray (Gy, 1 Gy = 100 rad), sedangkan bakteri yang termasuk dalam kelompok ini dapat bertahan hingga 5.000 Gy.[42][43]

Pada umumnya, paparan energi radiasi dapat menyebabkan mutasi gen dan putusnya rantai DNA.[44] Apabila terjadi pada intensitas yang tinggi, bakteri dapat mengalami kematian.[44] Deinococcus radiodurans memiliki kemampuan untuk bertahan terhadap mekanisme perusakan materi genetik tersebut melalui sistem adaptasi dan adanya proses perbaikan rantai DNA yang sangat efisien.[44]

[sunting] Peranan

[sunting] Bidang lingkungan

!Artikel utama untuk bagian ini adalah: Bakteri pengurai, Bakteri nitrifikasi, Bakteri denitrifikasi, dan Bakteri nitrogen

Keanekaragaman bakteri dan jalur metabolismenya menyebabkan bakteri memiliki peranan yang besar bagi lingkungan.[5] Sebagai contoh, bakteri saprofit menguraikan tumbuhan atau hewan yang telah mati dan sisa-sisa atau kotoran organisme.[5] Bakteri tersebut menguraikan protein, karbohidrat dan senyawa organik lain menjadi CO2, gas amoniak, dan senyawa-senyawa lain yang lebih sederhana.[5] Contoh bakteri saprofit antara lain Proteus dan Clostridium.[5] Tidak hanya berperan sebagai pengurai senyawa organik, beberapa kelompok bakteri saprofit juga merupakan patogen oportunis.[5]

Frankia alni, salah satu bakteri pengikat N2 yang berasosiasi dengan tanaman membentuk bintil akar.

Kelompok bakteri lainnya berperan dalam siklus nitrogen, seperti bakteri nitrifikasi.[2] Bakteri nitrifikasi adalah kelompok bakteri yang mampu menyusun senyawa nitrat dari senyawa amonia yang pada umumnya berlangsung secara aerob di dalam tanah.[45] Kelompok bakteri ini bersifat kemolitotrof.[45] Nitrifikasi terdiri atas dua tahap yaitu nitritasi (oksidasi amonia (NH4) menjadi nitrit (NO2-)) dan nitratasi (oksidasi senyawa nitrit menjadi nitrat (NO3)).[45] Dalam bidang pertanian, nitrifikasi sangat menguntungkan karena menghasilkan senyawa yang diperlukan oleh tanaman yaitu nitrat.[45] Setelah reaksi nitrifikasi selesai, akan terjadi proses dinitrifikasi yang dilakukan oleh bakteri denitrifikasi.[45] Denitrifikasi sendiri merupakan reduksi anaerobik senyawa nitrat menjadi nitrogen bebas (N2) yang lebih mudah diserap dan dimetabolisme oleh berbagai makhluk hidup.[2] Contoh bakteri yang mampu melakukan metabolisme ini adalah Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans.[46] Di samping itu, reaksi ini juga menghasilkan nitrogen dalam bentuk lain, seperti dinitrogen oksida (N2O).[2] Senyawa tersebut tidak hanya dapat berperan penting bagi hidup berbagai organisme, tetapi juga dapat berperan dalam fenomena hujan asam dan rusaknya ozon.[2] Senyawa N2O akan dioksidasi menjadi senyawa NO dan selanjutnya bereaksi dengan ozon (O3) membentuk NO2- yang akan kembali ke bumi dalam bentuk hujan asam (HNO2).[2]

Di bidang pertanian dikenal adanya suatu kelompok bakteri yang mampu bersimbiosis dengan akar tanaman atau hidup bebas di tanah untuk membantu penyuburan tanah.[5] Kelompok bakteri ini dikenal dengan istilah bakteri pengikat nitrogen atau singkatnya bakteri nitrogen. Bakteri nitrogen adalah kelompok bakteri yang mampu mengikat nitrogen (terutaman N2) bebas di udara dan mereduksinya menjadi senyawa amonia (NH4) dan ion nitrat (NO3-) oleh bantuan enzim nitrogenase.[47][48] Kelompok bakteri ini biasanya bersimbiosis dengan tanaman kacang-kacangan dan polong untuk membentuk suatu simbiosis mutualisme berupa nodul atau bintil akar untuk mengikat nitrogen bebas di udara yang pada umumnya tidak dapat digunakan secara langsung oleh kebanyakan organisme.[48][2] Secara umum, kelompok bakteri ini dikenal dengan istilah rhizobia, termasuk di dalamnya genus bakteri Rhizobium, Bradyrhizobium, Mesorhizobium, Photorhizobium, dan Sinorhizobium.[2] Contoh bakteri nitrogen yang hidup bersimbiosis dengan tanaman polong-polongan yaitu Rhizobium leguminosarum, yang hidup di akar membentuk nodul atau bintil-bintil akar.[2]

[sunting] Bidang pangan

Terdapat beberapa kelompok bakteri yang mampu melakukan proses fermentasi dan hal ini telah banyak diterapkan pada pengolahan berbagi jenis makanan.[5] Bahan pangan yang telah difermentasi pada umumnya akan memiliki masa simpan yang lebih lama, juga dapat meningkatkan atau bahkan memberikan cita rasa baru dan unik pada makanan tersebut.[5] Beberapa makanan hasil fermentasi dan mikroorganisme yang berperan:

No. Nama produk atau makanan Bahan baku Bakteri yang berperan
1. Yoghurt susu Lactobacillus bulgaricus dan Streptococcus thermophilus
2. Mentega susu Streptococcus lactis
3. Terasi ikan Lactobacillus sp.
4. Asinan buah-buahan buah-buahan Lactobacillus sp.
5. Sosis daging Pediococcus cerevisiae
6. Kefir susu Lactobacillus bulgaricus dan Streptococcus lactis

 

Beberapa spesies bakteri pengurai dan patogen dapat tumbuh di dalam makanan.[49] Kelompok bakteri ini mampu memetabolisme berbagai komponen di dalam makanan dan kemudian menghasilkan metabolit sampingan yang bersifat racun.[49] Clostridium botulinum, menghasilkan racun botulinin, seringkali terdapat pada makanan kalengan dan kini senyawa tersebut dipakai sebagai bahan dasar botox.[49] Beberapa contoh bakteri perusak makanan:

[sunting] Bidang kesehatan

Tidak hanya di bidang lingkungan dan pangan, bakteri juga dapat memberikan manfaat dibidang kesehatan. Antibiotik merupakan zat yang dihasilkan oleh mikroorganisme dan mempunyai daya hambat terhadap kegiatan mikroorganisme lain dan senyawa ini banyak digunakan dalam menyembuhkan suatu penyakit.[5] Beberapa bakteri yang menghasilkan antibiotik adalah:

Terlepas dari peranannya dalam menghasilkan antibiotik, banyak jenis bakteri yang justru bersifat patogen.[52] Pada manusia, beberapa jenis bakteri yang sering kali menjadi agen penyebab penyakit adalah Salmonella enterica subspesies I serovar Typhi yang menyebabkan penyakit tifus, Mycobacterium tuberculosis yang menyebabkan penyakit TBC, dan Clostridium tetani yang menyebabkan penyakit tetanus.[53][54] Bakteri patogen juga dapat menyerang hewan ternak, seperti Brucella abortus yang menyebabkan brucellosis pada sapi dan Bacillus anthracis yang menyebabkan antraks.[55] Untuk infeksi pada tanaman yang umum dikenal adalah Xanthomonas oryzae yang menyerang pucuk batang padi dan Erwinia amylovora yang menyebabkan busuk pada buah-buahan.[56]

[sunting] Dekomposisi

Dekomposisi buah persik setelah 6 hari.

Proses degradasi jasad makhluk hidup dilakukan oleh banyak organisme, salah satunya adalah bakteri. Beberapa jenis bakteri, terutama bakteri heterotrof, mampu mendegradasi senyawa organik dan menggunakannya untuk menunjang pertumbuhannya.[57] Proses dekomposisi ini dibantu oleh beberapa jenis enzim untuk memecah makromolekul, seperti karbohidrat, protein, dan lemak, untuk dipecah menjadi senyawa yang lebih sederhana. Sebagai contoh, enzim protease digunakan untuk memecah protein menjadi senyawa lebih sederhana, seperti asam amino.[57] Proses dekomposisi ini juga berperan dalam pengembalian unsur-unsur, terutama karbon dan nitrogen, ke alam untuk masuk ke dalam siklus lagi.[58]

Dekomposisi jasad makhluk hidup dimulai oleh bakteri yang hidup di dalam tubuh manusia, dimulai dari jaringan-jaringan otot.[58] Proses ini dipercepat saat tubuh telah dikuburkan. Reaksi pertama dalam dekomposisi ini adalah hidrolisis protein oleh protease membentuk asam amino.[58] Selanjutnya, asam amino akan diubah menjadi asam asetat, gas hidrogen, gas nitrogen, dan karbon dioksida sehingga pH lingkungan akan turun menjadi 4-5.[58] Reaksi ini dilakukan oleh bakteri acetogen. Pada tahap akhir, semua senyawa tersebut diubah menjadi gas metana oleh metanogen.[58]

 

[sunting] Referensi

  1. ^ “Bacteria (eubacteria)”. Taxonomy Browser. NCBI. Diakses pada 10 September 2008.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Madigan MT (2009). Brock Biology of Microorganisms Twelfth Edition.
  3. ^ Berg JM, Tymoczko JL Stryer L (2002). Molecular Cell Biology (edisi ke-5th). WH Freeman. ISBN 0-7167-4955-6.
  4. ^ Berg JM, Tymoczko JL Stryer L (2002). Molecular Cell Biology (edisi ke-5th). WH Freeman. ISBN 0-7167-4955-6.
  5. ^ a b c d e f g h i j k l m n o p q r s Todar K. 2008. Online Textbook of Bacteriology. http://www.textbookofbacteriology.net/index.html [diakses pada 21 Juni 2011].
  6. ^ Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP. 2005. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7(8):1227-38.
  7. ^ Gallego V, Garcia MT, Ventosa A. 2005.Methylobacteriumvariabile sp. nov., a methylotrophic bacterium isolated froman aquatic environment. Int J Syst Evol Microbiol 55:1429-33.
  8. ^ Pasamba EM, Demigillo RM, Lee AC. 2007. Antibiograms of pink pigmented facultative methylotrophic bacterial isolates fromvarious sources. Philipp Scient 44:47-56.
  9. ^ Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G. 2005. Methylohalomonas lacus gen. nov., sp. nov.and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gamma proteobacteria fromhypersaline lakes. Int J Syst Evol Microbiol 57: 2762–69.
  10. ^ Gray ND dan Head IM (2005). Microorganisms and Earth Systems; Advances in Geomicrobiology. ISBN 0-521-86222-1.
  11. ^ Koch A (2003). “Bacterial wall as target for attack: past, present, and future research”. Clin Microbiol Rev 16 (4): 673–87. doi:10.1128/CMR.16.4.673-687.2003. PMID 14557293.
  12. ^ Bardy SL, Ng SY, Jarrell KF (February 2003). “Prokaryotic motility structures”. Microbiology (Reading, Engl.) 149 (Pt 2): 295–304. doi:10.1099/mic.0.25948-0. PMID 12624192.
  13. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Madigan MT (2009). Brock Biology of Microorganisms Twelfth Edition.
  14. ^ a b Welkos S, Little S, Friedlander A, Fritz D, Fellows P. 2001. The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiol 147(6):1677-85.
  15. ^ Cole ST, et al.1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nat 393:537-544. doi:10.1038/31159
  16. ^ a b c d e f g h Davidson MW. 2009. Bacteria Cell Structure. http://micro.magnet.fsu.edu/cells/bacteriacell.html. Diakses pada 22 Juni 2011.
  17. ^ a b Carl. The Bacteria Cell. http://www.lanesville.k12.in.us/lcsyellowpages/tickit/carl/bacteria.html. Diakses pada 22 Juni 2011.
  18. ^ a b Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Ganzle MG. 2006. High-Pressure-Mediated Survival of Clostridium botulinum and Bacillus amyloliquefaciens Endospores at High Temperature. Appl Environ Microbiol 72(5):3476-81. doi:10.1128/AEM.72.5.3476-3481.2006
  19. ^ a b c Wellmeyer B. 2009. Bacterial Morphology. http://nhscience.lonestar.edu/biol/wellmeyer/bacteria/bacmorph.htm. Diakses pada 22 Juni 2011.
  20. ^ a b c d e Kaiser GE. 2006. The Prokaryotic Cell: Bacteria. http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit1/shape/shape.html. Diakses pada 22 Juni 2011.
  21. ^ a b c d e f g h i Heritage J. 2006. Medical Microbiology – A Brief Introduction. Diakses pada 22 Juni 2011.
  22. ^ a b c d e f Rollins DM, Joseph SW. 2004. Arrangement of Bacterial Flagella. Diakses pada 22 Juni 2011.
  23. ^ Wenner M. 2007. Humans Carry More Bacterial Cells than Human Ones. http://www.scientificamerican.com/article.cfm?id=strange-but-true-humans-carry-more-bacterial-cells-than-human-ones. Diakses pada 22 Juni 2011.
  24. ^ a b Science Daily. 2008. Humans Have Ten Times More Bacteria Than Human Cells: How Do Microbial Communities Affect Human Health?. http://www.sciencedaily.com/releases/2008/06/080603085914.htm. Diakses pada 22 Juni 2011.
  25. ^ Heilig HGHJ. Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, de Vos WM. 2001. Molecular Diversity of Lactobacillus spp. and Other Lactic Acid Bacteria in the Human Intestine as Determined by Specific Amplification of 16S Ribosomal DNA. Appl Environ Microbiol 68(1):114-123. DOI: 10.1128/AEM.68.1.114-123.2002
  26. ^ Rafter JJ. 1995. The role of lactic acid bacteria in colon cancer prevention. Scandinavian Journal of Gastroenterology 30(6):497-502.
  27. ^ Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol Rev 60:439-471.
  28. ^ Lengeler JW, DrewsGerhart, Schlegel HG. 1999. Biology of the Prokaryotes. Stuttgart: Blackwell Science.
  29. ^ Trotsenko YA, Doronina NV, Govorukhina NI. 1985. Metabolism of non-motile obligately methylotrophic bacteria. FEMS Microbiol Letters 33:293-297.
  30. ^ Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP, Wood AP. 2005. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ Microbiol 7(8):1227-38.
  31. ^ Liu Q, Kirchhoff JR, Faehnle CR, Viola RE, Hudson RA. 2005. A rapid method for the purification of methanol dehydrogenase from Methylobacterium extorquens. Prot Exp Pur 46:316-320.
  32. ^ Wassenaar TM. 2009. Extremophiles. http://www.bacteriamuseum.org/cms/Evolution/extremophiles.html. Diakses pada 22 Juni 2011.
  33. ^ Cavicchioli R, Siddiqui KS, Andrews D, Sowers K. 2002. Low-temperature extremophiles and their applications. Current Opinion Biotechnol 13(3)253-261. doi:10.1016/S0958-1669(02)00317-8.
  34. ^ NIehaus F, Bertoldo, Kahler M, Antranikian G. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6)711-729. DOI: 10.1007/s002530051456
  35. ^ a b Tribelli PM, Lopez NI. 2011. Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles. DOI: 10.1007/s00792-011-0384-1.
  36. ^ a b Cohen Krausz S, Trachtenberg S. 2002. The Structure of the Archeabacterial Flagellar Filament of the Extreme Halophile Halobacterium salinarum R1M1 and Its Relation to Eubacterial Flagellar Filaments and Type IV Pili. J Mol Biol 321(3):383-395.
  37. ^ Valera FR, Berraquero FR, Cormenzana AR. 1979. Isolation of Extreme Halophiles from Seawater. Appl Environ Microbiol 38(1):164-165.
  38. ^ a b c d Nikiyan H, Vasilchencko A, Deryabin D. 2010. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope. Int J Microbiol. Vol 2010. doi:10.1155/2010/704170.
  39. ^ Maier RM, Pepper IL, Gerba CP (2009). Environmental Microbiology, 2nd Edition. ISBN 978-0-12-370519-8.
  40. ^ a b c d Caldwell A. 2011. The Effects of Ultraviolet Light on Bacterial Growth. http://www.ehow.com/facts_5871403_effects-ultraviolet-light-bacterial-growth.html. Diakses pada 24 Juni 2011.
  41. ^ a b Shrieve DC, Loeffler JS. 2010. Human Radiation Injury. Halaman 105. Philadelphia: Lippincott Williams & Wilkins. ISBN 978-1-60547-011-5
  42. ^ a b Mattimore V, Battista JR. 1995. Radioresistance of Deinococcus radiodurans: Functions Necessary To Survive Ionizing Radiation Are Also Necessary To Survive Prolonged Desiccation. J Bacteriol 178(3): 633-637.
  43. ^ Madigan MT (2009). Brock Biology of Microorganisms Twelfth Edition. hlm. 480-481.
  44. ^ a b c Battista JR, Cox MM. 2005. Deinococcus radiodurans — the consummate survivor. Nat Rev Microbiol 3:882-892. doi:10.1038/nrmicro1264
  45. ^ a b c d e Madigan MT (2009). Brock Biology of Microorganisms Twelfth Edition. hlm. 403-404.
  46. ^ Carlson CA, Ingraham JL. 1983. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45(4):1247–1253.
  47. ^ Nitrogen Fixing Bacteria. 2011. Diakses pada 26 Juli 2011.
  48. ^ a b Deacon J. The Microbial World: The Nitrogen cycle and Nitrogen fixation Diakases pada 26 Juli 2011.
  49. ^ a b c Marler B. 2010. Clostridium Botulinum (Botulism). http://www.foodborneillness.com/botulism_food_poisoning/. Diakses pada 24 Juni 2011.
  50. ^ Welling W, Cohen JA, Berends W. 1960. Disturbance of oxidative phosphorylation by an antibioticum produced by pseudomonas cocovenenans. Biochem Pharmacol 3(2):122-135. doi:10.1016/0006-2952(60)90028-9.
  51. ^ Bacterial Fermentation. Diakses pada 24 Juni 2011.
  52. ^ Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 2002. Typhoid fever. N Engl J Med 347:1770–1782.
  53. ^ Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 2002. Typhoid fever. N Engl J Med 347:1770–1782.
  54. ^ Medie FM, Salahi IB, Drancourt M, Henrissat B. 2010. Paradoxical conservation of a set of three cellulose-targeting genes in Mycobacterium tuberculosis complex organisms. Microbiol 156:1468-1475. doi: 10.1099/mic.0.037812-0.
  55. ^ Rodriguez MC, Froger A, Rolland JP, Thomas D, Aguerol J, Delamarche C, Garcia-Lobo JM. A functional water channel protein in the pathogenic bacterium Brucella abortus. Microbiol 146(12):3251-3257. doi: 3251-3257.
  56. ^ Feng JX, Song ZZ, Duan CJ, Zhao S, Wu YQ, Wang C, Dow JM, Tang JL. 2009. The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice. Microbiol 155(9):3033-44.
  57. ^ a b Decomposition by bacteria. Diakses pada 24 Juni 2011.
  58. ^ a b c d e Decomposition of Organic Matter. Diakses pada 24 Juni 2011.

[sunting] Referensi

  1. ^ a b Templat:Vcite web
  2. ^ a b c d e f g h Akin, H.M. (2005) (Didigitalisasi oleh Google Penelusuran Buku). Virologi Tumbuhan. Yogyakarta: Kanisius. hlm. hlm. 17. ISBN 9792111808, 9789792111804. Diakses pada 13 Maret 2009.
  3. ^ Campbell et al. (2002), hlm. 341. Diakses pada 26 Maret 2009.
  4. ^ Creager, A.N.H. (2002) (Didigitalisasi oleh Google Penelusuran Buku). The life of a virus: tobacco mosaic virus as an experimental model, 1930-1965 (edisi ke-Edisi ke-2). Chicago: University of Chicago Press. hlm. hlm. 119. ISBN 0226120260, 9780226120263. Diakses pada 26 Maret 2009.
  5. ^ a b c d Rous P (1911). “A sarcoma of the fowl transmissible by an agent separable from the tumor cells” (pdf). J Exp Med 13: 397-399.
  6. ^ a b Shope RE (1933). “Infectious papillomatosis of rabbits; with a note on the histopathology” (pdf). J Exp Med 58: 607.
  7. ^ a b c Stanley WM (1933). “Isolation of a crystalline protein possessing the properties of tobacco mosaic virus” (pdf). Science 81: 644-645.
  8. ^ a b Hershey AD, Chase M (1952). “Independent Function of Viral Protein and Nucleic Acid in Growth of Bacteriophage” (pdf). Journal of General Physiology 36: 39-56.
  9. ^ a b c Campbell et al. (2002), hlm. 342. Diakses pada 26 Maret 2009.
  10. ^ a b c d e f g h i Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 (lihat di Penelusuran Buku Google)
  11. ^ a b c d e Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 (lihat di Penelusuran Buku Google)
  12. ^ a b c d e Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 (lihat di Penelusuran Buku Google)
  13. ^ a b Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 (lihat di Penelusuran Buku Google)
  14. ^ a b Strauss, JH.; Strauss, EG. (2008), Viruses and Human Disease, London: Elsevier, ISBN 978-0-12-375145-1 (lihat di Penelusuran Buku Google)
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Evans, AS.; Kaslow, RA. (1997), Viral Infections of Humans:epidemiology and Control, New York: Plenum Publishing Corporation, ISBN 0-306-44856-4 (lihat di Penelusuran Buku Google)
  16. ^ a b c d e f Schneider-Schaulies J (2000). “Cellular receptors for viruses: links to tropism and pathogenesis” (pdf). Journal of General Virology 81: 1413-1429.
  17. ^ a b c d e Olson NH (1992). “Structure of a human rhinovirus complexed with its receptormolecule” (pdf). Proc. Natl. Acad. Sci. USA 90: 507-511.
  18. ^ a b Yongning H. (2000). “Interaction of the poliovirus receptor with poliovirus” (pdf). PNAS 97: 79-84.
  19. ^ a b c d Hidari KIPJ (2010). “Glycan Receptor for Influenza Virus” (pdf). The Open Antimicrobial Agents Journal 2: 26-33.
  20. ^ a b c d e f g h i j k l m n o Mahy, BWJ.; van Regenmortel, MHW. (2010), Desk Encyclopedia of General Virology, San Diego: Elsevier, ISBN 978-0-12-375145-1 (lihat di Penelusuran Buku Google)
  21. ^ Cossart, P (2005), Cellular Microbiology, Washington DC: American Society for Microbiology Press, ISBN 1-55581-302-X (lihat di Penelusuran Buku Google)
  22. ^ a b c d Cheng, H.; Hammar, L. (2004), Cellular Microbiology, Singapore: World Scientifis Publishing Co. Pte. Ltd., ISBN 981-238-614-9 (lihat di Penelusuran Buku Google)
  23. ^ Carter, JB.; Saunders, VA. (2007), Virology: Principles and Applications, England: John Wiley & Sons, Ltd., ISBN 978-0-470-023860-0 (lihat di Penelusuran Buku Google)
  24. ^ a b c d e f g h i j k l Wagner (2008), Basic Virology, Australia: Blackwell Publishing, ISBN 2007019839 (lihat di Penelusuran Buku Google)
  25. ^ a b c d Carter, JB.; Saunders, VA. (2007), Virology: Principles and Application, England: John Wiley & Sons Ltd., ISBN 978-0-470-02386-0 (lihat di Penelusuran Buku Google)
  26. ^ a b c d e f Cheville, NF. (1994), Ultrastructural Pathology : an Introduction to Interpretion, Iowa: Iowa State University Press, ISBN 0-8138-2398-6 (lihat di Penelusuran Buku Google)
  27. ^ Breeze, R.; Budowle, B.; Schutzer, SE. (2005), Microbial Forensics, London: Elsevier Inc, ISBN 0-12-088483-6 (lihat di Penelusuran Buku Google)
  28. ^ a b Rapley, R. (2005), Medical Biomedical Handbook, New Jersey: Humana Press, ISBN 978-1-58829-288-9 (lihat di Penelusuran Buku Google)
  29. ^ a b c d e f g h i White, DO.; Fenner, F. (1994), Medical virology, California: Academic Press, ISBN 978-0-12-746642-2 (lihat di Penelusuran Buku Google)
  30. ^ a b c d e Oxford, JS.; Oberg, B. (1985), Conquest of viral diseases: a topical review of drugs and vaccines, Netherlands: Elsevier Science Publisher B.V, ISBN 0-444-80566-4 (lihat di Penelusuran Buku Google)
  31. ^ a b c d e f g h i j k Cheville, NF. (1994), Ultrastructural Pathology : an Introduction to Interpretion, Iowa: Iowa State University Press, ISBN 0-8138-2398-6 (lihat di Penelusuran Buku Google)g
  32. ^ a b c d Nermut, MV.; Steven, AC. (1987), Animal Virus Structure, New York: Elsevier Science Publishing Company, ISBN 0-444-80879-5 (lihat di Penelusuran Buku Google)
  33. ^ a b c d e White, DO.; Fenner, F. (1994), Medical virology, California: Academic Press, ISBN 978-0-12-746642-2 (lihat di Penelusuran Buku Google)
  34. ^ a b c d e f g h i j k l Crowley, LV. (2010), An Introduction to Human Disease: Pathology and Pathophysiology, Sudburry: Jones and Bartlett Publishers, ISBN 978-0-7637-6591-0 (lihat di Penelusuran Buku Google)
  35. ^ a b c Zuckerman, AJ.; Banatvala, JE.; Griffiths, P. (2009), Principles and Practice of Clinical Virology, England: John Wiley & Sons Ltd., ISBN 978-0-470-51799-4 (lihat di Penelusuran Buku Google)
  36. ^ a b c d e Singh, M. (2007), Vaccine Adjuvants and Delivery Systems, New Jersey: John Wiley & Sons Ltd., ISBN 978-0-471-73907-4 (lihat di Penelusuran Buku Google)

Alga

Alga (jamak Algae) adalah sekelompok organisme autotrof yang tidak memiliki organ dengan perbedaan fungsi yang nyata. Alga bahkan dapat dianggap tidak memiliki “organ” seperti yang dimiliki tumbuhan (akar, batang, daun, dan sebagainya). Karena itu, alga pernah digolongkan pula sebagai tumbuhan bertalus.

Istilah ganggang pernah dipakai bagi alga, namun sekarang tidak dianjurkan karena dapat menyebabkan kekacauan arti dengan sejumlah tumbuhan yang hidup di air lainnya, seperti Hydrilla.

Dalam taksonomi yang banyak didukung para pakar biologi, alga tidak lagi dimasukkan dalam satu kelompok divisi atau kelas tersendiri, namun dipisah-pisahkan sesuai dengan fakta-fakta yang bermunculan saat ini. Dengan demikian alga bukanlah satu kelompok takson tersendiri.

Daftar isi

[sembunyikan]

[sunting] Kelompok-kelompok alga

Dalam pustaka-pustaka lama, alga selalu gagal diusahakan masuk dalam satu kelompok, baik yang bersel satu maupun yang bersel banyak. Salah satu contohnya adalah pemisahan alga bersel satu (misalnya Euglena ke dalam Protozoa) dari alga bersel banyak (ke dalam Thallophyta).

Belakangan disadari sepenuhnya bahwa pengelompokan sebagai satu klad tidak memungkinkan bagi semua alga, bahkan setelah dipisahkan berdasarkan organisasi selnya, karena sebagian alga bersel satu lebih dekat berkerabat dengan alga bersel banyak tertentu.

Saat ini, alga hijau dimasukkan ke dalam kelompok (klad) yang lebih berdekatan dengan semua tumbuhan fotosintetik (membentuk klad Viridiplantae). Alga merah merupakan kelompok tersendiri (Rhodophycophyta atau Rhodophyceae); demikian juga alga pirang (Phaeophycophyta atau Phaeophyceae) dan alga keemasan (Chrysophyceae).

[sunting] Alga prokariotik

Alga biru-hijau kini dimasukkan sebagai bakteri sehingga dinamakan Cyanobacteria (“bakteri biru-hijau”, dulu disebut Cyanophyceae, “alga biru-hijau”) Dengan demikian, sebutan “alga” menjadi tidak valid. Cyanobacteria memiliki struktur sel prokariotik seperti halnya bakteri, namun mampu melakukan fotosintesis langsung karena memiliki klorofil.

Sebelumnya, alga ini bersama bakteri masuk ke dalam kerajaan Monera. Akan tetapi dalam perkembangan selanjutnya diketahui bahwa ia lebih banyak memiliki karakteristik bakteri sehingga dimasukkan ke dalam kelompok bakteri benar (Eubacteria). Sebagai tambahan, beberapa kelompok organisme yang sebelumnya dimasukkan sebagai bakteri, sekarang malah dipisahkan menjadi kerajaan tersendiri, Archaea.

[sunting] Alga eukariotik

Diagram yang menggambarkan teori mengenai evolusi alga (dan tumbuhan) masa kini yang banyak didukung.

Jenis-jenis alga lainnya memiliki struktur sel eukariotik dan mampu berfotosintesis, entah dengan klorofil maupun dengan pigmen-pigmen lain yang membantu dalam asimilasi energi.

Dalam taksonomi paling modern, alga-alga eukariotik meliputi filum/divisio berikut ini. Perlu disadari bahwa pengelompokan semua alga eukariotik sebagai Protista dianggap tidak valid lagi karena sebagian alga (misalnya alga hijau dan alga merah) lebih dekat kekerabatannya dengan tumbuhan daripada eukariota bersel satu lainnya.

 Jamur

Jamur atau cendawan adalah tumbuhan yang tidak mempunyai klorofil sehingga bersifat heterotrof.[1] Jamur ada yang uniseluler dan multiseluler.[1] Tubuhnya terdiri dari benang-benang yang disebut hifa.[1] Hifa dapat membentuk anyaman bercabang-cabang yang disebut miselium.[1] Reproduksi jamur, ada yang dengan cara vegetatif ada juga dengan cara generatif.[1] Jamur menyerap zat organik dari lingkungan melalui hifa dan miseliumnya untuk memperoleh makanannya.[2] Setelah itu, menyimpannya dalam bentuk glikogen.[2] Jamur merupakan konsumen, maka dari itu jamur bergantung pada substrat yang menyediakan karbohidrat, protein, vitamin, dan senyawa kimia lainnya.[2] Semua zat itu diperoleh dari lingkungannya.[2] Sebagai makhluk heterotrof, jamur dapat bersifat parasit obligat, parasit fakultatif, atau saprofit.[2]

Cara hidup jamur lainnya adalah melakukan simbiosis mutualisme.[2] Jamur yang hidup bersimbiosis, selain menyerap makanan dari organisme lain juga menghasilkan zat tertentu yang bermanfaat bagi simbionnya.[2] Simbiosis mutualisme jamur dengan tanaman dapat dilihat pada mikoriza, yaitu jamur yang hidup di akar tanaman kacang-kacangan atau pada liken.[2] Jamur berhabitat pada bermacammacam lingkungan dan berasosiasi dengan banyak organisme.[2] Meskipun kebanyakan hidup di darat, beberapa jamur ada yang hidup di air dan berasosiasi dengan organisme air.[2] Jamur yang hidup di air biasanya bersifat parasit atau saprofit, dan kebanyakan dari kelas Oomycetes.[2]

 

Kita telah mengenal jamur dalam kehidupan sehari-hari meskipun tidak sebaik tumbuhan lainnya. Hal itu disebabkan karena jamur hanya tumbuh pada waktu tertentu, pada kondisi tertentu yang mendukung, dan lama hidupnya terbatas. Sebagai contoh, jamur banyak muncul pada musim hujan di kayu-kayu lapuk, serasah, maupun tumpukan jerami. namun, jamur ini segera mati setelah musim kemarau tiba. Seiring dengan perkembangan ilmu pengetahuan dan teknologi, manusia telah mampu membudidayakan jamur dalam medium buatan, misalnya jamur merang, jamur tiram, dan jamur kuping.

CIRI-CIRI UMUM JAMUR
Jamur merupakan kelompok organisme eukariotik yang membentuk dunia jamur atau regnum fungi. Jamur pada umumnya multiseluler (bersel banyak). Ciri-ciri jamur berbeda dengan organisme lainnya dalam hal cara makan, struktur tubuh, pertumbuhan, dan reproduksinya.

1. Struktur Tubuh

Struktur tubuh jamur tergantung pada jenisnya. Ada jamur yang satu sel, misalnyo khamir, ada pula jamur yang multiseluler membentuk tubuh buah besar yang ukurannya mencapai satu meter, contohnyojamur kayu. Tubuh jamur tersusun dari komponen dasar yang disebut hifa. Hifa membentuk jaringan yang disebut miselium. Miselium menyusun jalinan-jalinan semu menjadi tubuh buah.

Gbr. Hifa yang membentuk miselium dan tubuh buah

Hifa adalah struktur menyerupai benang yang tersusun dari dinding berbentuk pipa. Dinding ini menyelubungi membran plasma dan sitoplasma hifa. Sitoplasmanya mengandung organel eukariotik.
Kebanyakan hifa dibatasi oleh dinding melintang atau
septa. Septa mempunyai pori besar yang cukup untuk dilewati ribosom, mitokondria, dan kadangkala inti sel yang mengalir dari sel ke sel. Akan tetapi, adapula hifa yang tidak bersepta atau hifa senositik.
Struktur hifa senositik dihasilkan oleh pembelahan inti sel berkali-kali yang tidak diikuti dengan pembelahan sitoplasma.
Hifa pada jamur yang bersifat parasit biasanya mengalami modifikasi menjadi
haustoria yang merupakan organ penyerap makanan dari substrat; haustoria dapat menembus jaringan substrat.

2. Cara Makan dan Habitat Jamur
Semua jenis jamur bersifat heterotrof. Namun, berbeda dengan organisme lainnya, jamur tidak memangsa dan mencernakan makanan. Clntuk memperoleh makanan, jamur menyerap zat organik dari lingkungan melalui hifa dan miseliumnya, kemudian menyimpannya dalam bentuk glikogen. Oleh karena jamur merupakan konsumen maka jamur bergantung pada substrat yang menyediakan karbohidrat, protein, vitamin, dan senyawa kimia lainnya. Semua zat itu diperoleh dari lingkungannya. Sebagai makhluk heterotrof, jamur dapat bersifat parasit obligat, parasit fakultatif, atau saprofit. Lihat Gambar 5.3.

a. Parasit obligat
merupakan sifat jamur yang hanya dapat hidup pada inangnya,
sedangkan di luar inangnya tidak dapat hidup. Misalnya,
Pneumonia
carinii
(khamir yang menginfeksi paru-paru penderita AIDS).

b. Parasit fakultatif
adalah jamur yang bersifat parasit jika mendapatkan inang yang
sesuai, tetapi bersifat saprofit jika tidak mendapatkan inang yang
cocok.

c. Saprofit
merupakan jamur pelapuk dan pengubah susunan zat organik yang
mati. Jamur saprofit menyerap makanannya dari organisme yang telah
mati seperti kayu tumbang dan buah jatuh. Sebagian besar jamur
saprofit
mengeluar-kan enzim hidrolase pada substrat makanan untuk
mendekomposisi molekul kompleks menjadi molekul sederhana sehingga
mudah diserap oleh hifa. Selain itu, hifa dapat juga langsung
menyerap bahanbahan organik dalam bentuk sederhana yang
dikeluarkan oleh inangnya.

Cara hidup jamur lainnya adalah melakukan simbiosis mutualisme. Jamur yang hidup bersimbiosis, selain menyerap makanan dari organisme lain juga menghasilkan zat tertentu yang bermanfaat bagi simbionnya. Simbiosis mutualisme jamur dengan tanaman dapat dilihat pada mikoriza, yaitu jamur yang hidup di akar tanaman kacang-kacangan atau pada liken.

Jamur berhabitat pada bermacammacam lingkungan dan berasosiasi dengan banyak organisme. Meskipun kebanyakan hidup di darat, beberapa jamur ada yang hidup di air dan berasosiasi dengan organisme air. Jamur yang hidup di air biasanya bersifat parasit atau saprofit, dan kebanyakan dari kelas Oomycetes.


3. Pertumbuhan dan Reproduksi
Reproduksi jamur dapat secara seksual (generatif) dan aseksual (vegetatif). Secara aseksual, jamur menghasilkan spora. Spora jamur berbeda-beda bentuk dan ukurannya dan biasanya uniseluler, tetapi adapula yang multiseluler. Apabila kondisi habitat sesuai, jamur memperbanyak diri dengan memproduksi sejumlah besar spora aseksual. Spora aseksual dapat terbawa air atau angin. Bila mendapatkan tempat yang cocok, maka spora akan berkecambah dan tumbuh menjadi jamur dewasa.

Reproduksi secara seksual pada jamur melalui kontak gametangium dan konjugasi. Kontak gametangium mengakibatkan terjadinya singami, yaitu persatuan sel dari dua individu. Singami terjadi dalam dua tahap, tahap pertama adalah plasmogami (peleburan sitoplasma) dan tahap kedua adalah kariogami (peleburan inti). Setelah plasmogami terjadi, inti sel dari masing-masing induk bersatu tetapi tidak melebur dan membentuk dikarion. Pasangan inti dalam sel dikarion atau miselium akan membelah dalam waktu beberapa bulan hingga beberapa tahun. Akhimya inti sel melebur membentuk sel diploid yang segera melakukan pembelahan meiosis.

4. Peranan Jamur
Peranan jamur dalam kehidupan ma
nusia sangat banyak, baik peran yang merugikan maupun yang menguntungkan. Jamur yang menguntungkan meliputi berbagai jenis antara lain sebagai berikut.
a. Volvariella volvacea (jamur merang) berguna sebagai bahan pangan
berprotein tinggi.
b.
Rhizopus dan Mucor berguna dalam industri bahan makanan, yaitu
dalam pembuatan tempe dan oncom.
c.
Khamir Saccharomyces berguna sebagai fermentor dalam industri
keju, roti, dan bir.

d. Penicillium notatum berguna sebagai
penghasil antibiotik.
e. Higroporus dan Lycoperdon perlatum
berguna sebagai dekomposer.

Di samping peranan yang menguntungkan, beberapa jamur juga mempunyai peranan yang merugikan, antara lain sebagai berikut.
a. Phytium sebagai hama bibit tanaman yang menyebabkan penyakit
rebah semai.

b.
Phythophthora inf’estan menyebabkan penyakit pada daun tanaman
kentang.
c. Saprolegnia sebagai parasit pada tubuh
organisme air.
d. Albugo merupakan parasit pada tanaman pertanian.
e. Pneumonia carinii menyebabkan penyakit pneumonia pada paru-paru
manusia.
f. Candida sp. penyebab keputihan dan sariawan pada manusia.

Jamur merupakan tumbuhan yang tidak mempunyai klorofil sehingga bersifat heterotrof, tipe sel: sel eukarotik. Jamur ada yang uniseluler dan multiseluler. Tubuhnya terdiri dari benang-benang yang disebut hifa, hifa dapat membentuk anyaman bercabang-cabang yang disebut miselium. Reproduksi jamur, ada yang dengan cara vegetatif ada pula dengan cara generatif.

JAMUR DIBAGI MENJADI 6 DIVISI :

1 MYXOMYCOTINA (Jamur lendir)
• Myxomycotina merupakan jamur yang paling sederhana.
• Mempunyai 2 fase hidup, yaitu:
- fase vegetatif (fase lendir) yang dapat bergerak seperti
amuba, disebut plasmodium
- fase tubuh buah
• Reproduksi : secara vegetatif dengan spora, yaitu spora
kembara yang disebut myxoflagelata.
Contoh spesies : Physarum polycephalum
2 OOMYCOTINA
• Tubuhnya terdiri atas benang/hifa tidak bersekat, bercabang-cabang dan mengandung banyak inti.
• Reproduksi:
- Vegetatif : yang hidup di air dengan zoospora yang hidup di
darat dengan sporangium dan konidia.
- Generatif : bersatunya gamet jantan dan betina membentuk
oospora yang selanjutnya tumbuh menjadi individu baru.

Contoh spesies:
a. Saprolegnia sp. : hidup saprofit pada bangkai ikan, serangga
darat maupun serangga air.
b. Phytophora infestans: penyebab penyakit busuk pada kentang.

3 ZYGOMYCOTINA
• Tubuh multiseluler.
• Habitat umumnya di darat sebagai saprofit.
• Hifa tidak bersekat.
• Reproduksi:
- Vegetatif: dengan spora.
- Generatif: dengan konyugasi hifa (+) dengan hlifa (-) akan
menghasilkan zigospora yang nantinya akan tumbuh menjadi
individu baru.

Contoh spesies:
a. Mucor mucedo : biasa hidup di kotoran ternak dan roti.
b. Rhizopus oligosporus : jamur tempe.

4 ASCOMYCOTINA
• Tubuh ada yang uniseluler dan ada yang multi se lul er.
• Ascomycotina, multiseluler, hifanya bersekat dan berinti banyak.
• Hidupnya: ada yang parasit, saprofit, ada yang bersimbiosis
dengan ganggang membentuk Lichenes (Lumut kerak).
• Reproduksi:
- Vegetatif : pada jamur uniseluler membentuk tunas-tunas,
pada yang multiseluler membentuk spora dari konidia.
- Generatif: Membentuk askus yang menghasilkan askospora.

Contoh spesies:
1. Sacharomyces cerevisae:
sehari-hari dikenal sebagai ragi.
- berguna untuk membuat bir, roti maupun alkohol.
- mampu mengubah glukosa menjadi alkohol dan CO2 dengan
proses fermentasi.
2. Neurospora sitophila:
jamur oncom.
3. Peniciliium noJaJum
dan Penicillium chrysogenum
penghasil antibiotika penisilin.
4. Penicillium camemberti dan Penicillium roqueforti
berguna untuk mengharumkan keju.
5. Aspergillus oryzae
untuk membuat sake dan kecap.
6. Aspergillus wentii
untuk membuat kecap
7. Aspergillus flavus
menghasilkan racun aflatoksin Þ hidup pada biji-bijian. flatoksin salah satu penyebab kanker hati.
8. Claviceps purpurea
hidup sebagai parasit padabakal buah Gramineae.

5 BASIDIOMYCOTINA
• Ciri khasnya alat repoduksi generatifnya berupa basidium sebagai
badan penghasil spora.
• Kebanyalcan anggota spesies berukuran makroskopik.

Contoh spesies:
1. Volvariella volvacea :
jamur merang, dapat dimakan dan sudah dibudidayakan
2. Auricularia polytricha :
jamur kuping, dapat dimakan dan sudah dibudidayakan
3. Exobasidium vexans :
parasit pada pohon teh penyebab penyakit cacar daun teh atau
blister blight.
4. Amanita muscaria dan Amanita phalloides:
jamur beracun, habitat di daerah subtropis
5. Ustilago maydis :
jamur api, parasit pada jagung.
6. Puccinia graminis :
jamur karat, parasit pada gandum

6. DEUTEROMYCOTIN
Nama lainnya Fungi Imperfecti (jamur tidak sempurna) dinamakan demikian karena pada jamur ini belum diketahui dengan pasti cara pembiakan secara generatif.

Contoh : Jamur Oncom sebelum diketahui pembiakan generatifnya dinamakan Monilia sitophila tetapi setelah diketahui pembiakan generatifnya yang berupa askus namanya diganti menjadi Neurospora sitophila dimasukkan ke dalam Ascomycotina.

Banyak penyakit kulit karena jamur (dermatomikosis) disebabkan oleh jamur dari golongan ini, misalnya :Epidermophyton fluocosum penyebab penyakit kaki atlit, Microsporum sp., Trichophyton sp. penyebab penyakit kurap.

MIKORHIZA
Mikorhiza adalah simbiosis antara jamur dengan tumbuhan tingkat tinggi, jamur yang dari Divisio Zygomycotina, Ascomycotina dan Basidiomycotina.

LICHENES / LIKENES
Likenes adalah simbiosis antara ganggang dengan jamur, ganggangnya berasal dari ganggang hijau atau ganggang biru, jamurnya berasal dari Ascomycotina atau Basidiomycotina. Likenes tergolong tumbuhan pionir/vegetasi perintis karena mampu hidup di tempat-tempat yang ekstrim.

Contoh :
Usnea dasypoga
Parmelia acetabularis

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s